C $=0$ STRETCHING VIBRATIONS
 OF 5,6-DIHYDRO-4,7-DITHIA-1,3-INDANEDIONE DERIVATIVES

A.Perjéssy, P.Temkovitz and P.Hrnčiar
Department of Organic Chemistry,
Comenius University, 80100 Bratislava

Received July 16th, 1975

The wavenumbers of $\mathrm{C}=\mathrm{O}$ stretching vibrations of 72 5,6-dihydro-4,7-dithia-1,3-indanedione derivatives were measured in chloroform, acetonitrile and tetrachloromethane. For 187 experimental points a statistically significant linear empirical relationship was found between the wavenumbers of symmetric and asymmetric $\mathrm{C}=\mathrm{O}$ stretching vibrations. The effect of structure and geometry on $\mathrm{C}=\mathrm{O}$ stretching vibrations, on the degree of the vibrational coupling in 1,3-dicarbonyl system, as well as on different sensitivity of the $\mathrm{C}=\mathrm{O}$ symmetric and asymmetric vibration to structural and solvent changes was investigated.

In the previous papers ${ }^{1,2}$ we investigated the transmission of electronic substituent effects in some 5,6-dihydro-4,7-dithia-1,3-indanedione derivatives using $\mathrm{C}=\mathrm{O}$ stretching vibrations. In the 1,3 -indanedione ${ }^{3}$ and $1,3-\mathrm{benz}[f]$ indanedione ${ }^{4}$ series we found statistically significant linear relationships between the wavenumbers of symmetric and asymmetric $\mathrm{C}=\mathrm{O}$ stretching vibrations.

Recently we turned our attention to the study of the infrared spectra of 5,6 -di-hydro-4,7-dithia-1,3-indanedione derivatives in order to examine the linear relationships between the wavenumbers of symmetric and asymmetric $\mathrm{C}=\mathrm{O}$ stretching vibration as well as the relations between structure, position of the bands and degree of the vibrational coupling in the 1,3-dicarbonyl system.

EXPERIMENTAL

The synthesis, properties and purification of the studied derivatives of 5,6-dihydro-4,7-dithia-$-1,3$-indanedione were already described ${ }^{1,2,5,6}$. The $\mathrm{C}=\mathrm{O}$ stretching vibrations were determined in chloroform, acetonitrile and tetrachloromethane according to ref. ${ }^{3}$. The wavenumbers of symmetric and asymmetric $\mathrm{C}=\mathrm{O}$ stretching vibrations were correlated using a standard linear regression program. The calculations were carried out on a Hewlett-Packard 9100 B computer.

RESULTS AND DISCUSSION

The wavenumbers of the $\mathrm{C}=\mathrm{O}$ stretching vibrations of 5,6-dihydro-4,7-dithia--1,3-indanediones, measured in chloroform, acetonitrile and tetrachloromethane,
are listed in Table I. All the 5,6-dihydro-4,7-dithia-1,3-indanediones, similarly as other 1,3 -indanedione derivatives ${ }^{3,4,7,8}$, exist in organic solvents preponderantly in the diketo form and, as a result of vibrational coupling, their spectra exhibit bands due to symmetric and asymmetric $\mathrm{C}=\mathrm{O}$ stretching vibrations:

I

11

VII

II

V

VIH

[1I

VI

$I X$

Compounds, containing an $s p^{2}$ hybridised $\mathrm{C}_{(2)}$ atom (measured in acetonitrile) are an exception. Their spectra exhibit an anomalously broad and intense absorption band at about $1650 \mathrm{~cm}^{-1}$ which often overlaps with bands of symmetric and asymmetric $\mathrm{C}=\mathrm{O}$ stretching vibration.
The studied compounds can be divided into several groups, according to the effect of their structure on the position of the $\mathrm{C}=\mathrm{O}$ absorption bands (Fig. 1). It is seen from the Figure that the substituents on the 5,6-dihydro-4,7-dithia-1,3-indanedione skeleton have a marked effect on the symmetric as well as asymmetric vibrations. 2,2-Dihalo derivatives I and 2-halo-2-aryl derivatives $I I$, i.e. compounds with elec-tron-accepting substituent, absorb at higher wavenumbers than the unsubstituted compound III. Thanks to the +I -effect of the alkyl group the absorption bands

Table 1
Wavenumbers of $\mathrm{C}=\mathrm{O}$ Stretching Vibrations, $v_{\text {as }}$ and $v_{\mathrm{s}}\left(\mathrm{cm}^{-1}\right)$, in the Spectra of Substituted 5,6-Dihydro-4,7-dithia-1,3-indanediones

| Com-
 pound | Substituent | $\mathrm{CHCl}_{3}{ }^{a}$ | $\mathrm{CH}_{3} \mathrm{CN}^{a}$ | $\mathrm{CCl}_{4}{ }^{a}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1	2,2-dibromo
2	2-bromo-2-phenyl
3	2-chloro-2-phenyl
4	unsubstituted
5	2-phenyl
6	2-(4-methoxyphenyl)
7	2-(3-methoxyphenyl)
8	2-(3-fluorophenyl)
9	2-(3-chlorophenyl)
10	2-(4-methylphenyl)
11	2-(1-naphthyl)
12	2-methyl
13	2-ethyl
14	2-hydroxymethyl
15	2-carboxy
16	2-oxy
17	2-(1-methylethylidene)
18	2-(2-hydroxyethylidene)
19	2-(1-methylpropylidene)
20	2-cinnamylidene
23	2-cyclohexylidene
22	2-cyclopentylidene
23	2-phenylmethylene
24	2-(4-dimethylaminophenylmethylene)
25	2-(4-aminophenylmethylene)
26	2-(4-hydroxyphenylmethylene)
27	2-(3-methoxy-4-hydroxyphenylmethylene)
28	2-(3,4-methylenedioxyphenylmethylene)
29	2-(4-methoxyphenylmethylene)
30	2-(3-methylphenylmethylene)
31	2-(3-methoxyphenylmethylene)
32	2-(4-iodophenylmethylene)
33	2-(4-chlorophenylmethylene)
34	2-(3-iodophenylmethylene)
35	2-(3-chlorophenylmethylene)
36	2-(3-bromophenylmethylene)
37	2-(4-cyanophenylmethylene)
38	2-(3-nitrophenylmethylene)
39	2-(4-nitrophenylmethylene)

1711	1751	1711	1751		
1702	1743	1700	1743	1708	1748
1706	1748	1706	1748	1712	1752
1699	1740	1701	1741	1707	1744
1697	1741	1697	1740	1705	1744
1697	1741	1698	1741	1704	1745
1698	1741	1697	1741	1705	1744
1698	1742	1697	1741	1705	1744
1699	1743	1697	1742	1705	1746
1697	1741	1696	1741	1705	1745
1697	1741	1697	1741	1705	1745
1696	1741	1698	1742	1705	1744
1694	1737	1695	1736	1701	1742
1696	1740	1702	1741	1707	1743
1695	1739	1698	1741		
1698	1738	1698	1737		
1674	1724	1676	1723	1678	1724
1695	1737	1697	1737	1693	1732
1674	1721	1674	1720	1683	1724
1675	1720	1678	1721	1680	1722
1677	1718	1676	1719	1680	1721
1679	1724	1681	1724	1684	1725
1676	1722	1676	1722	1681	1724
1664	1712	1663	1710	1671	1717
1669	1715	1670	1715	-	
1671	1717	1675	1718	1677	1723
1669	1717	1670	1717	1675	1723
1672	1717	1675	1718		
1671	1717	1675	1718	1678	1722
1674	1720	1677	1722	1680	1722
1676	1723	1677	1722	1680	1724
1677	1723			1682	1724
1677	1722	1676	1722	1679	1722
1677	1723	1675	1723	1682	1726
1677	1723	1677	1723	1681	1726
1678	1723	1678	1723	1682	1726
1679	1724	1679	1724	1683	1727
1679	1724	1680	1725	--	
680	1724	1681	1725	1683	172

Table I
(Continued)

Compound	Substituent	$\mathrm{CHCl}_{3}{ }^{\text {a }}$		$\mathrm{CH}_{3} \mathrm{CN}^{a}$	$\mathrm{CCl}_{4}{ }^{\text {a }}$	
		$\nu_{\text {as }}$	$\nu_{\text {s }}$	$\nu_{\text {as }} \quad v_{\text {s }}$	$v_{\text {a }}$	v_{s}
40	2-furfurylidene	1675	1723	16771722	1681	1726
41	2-(5-methylthiofurfurylidene)	1670	1715	- -	1677	1724
42	2-(5-methylfurfurylidene)	1671	1717	16761720	1678	1725
43	2-(5-phenylthiofurfurylidene)	1673	1722	- -	1679	1726
44	2-(5-chlorofurfurylidene)	1675	1723	1647	1680	1727
45	2-(5-iodofurfurylidene)	1674	1723	1648	1681	1727
46	2-(5-bromofurfurylidene)	1675	1724	1647	1680	1727
47	2-(5-nitrofurfurylidene)	1697	1728	17001740	1684	1732
48	2-(5-phenyl-2-furfurylidene)	1670	1716	1648	1677	1724
49	2-[5-(4-hydroxyphenyl)-2-furfurylidene]	1668	1715	$1671 \quad 1717$	1675	1721
50	2-[5-(4-methoxyphenyl)-2-furfurylidene]	1669	1715	16701715	1676	1722
51	2-[5-(4-methylphenyl)-2-furfurylidene]	1670	1715	1746	1677	1724
52	2-[5-(4-aminophenyl)-2-furfurylidene]	1670	1715	16711717	-	
53	2-[5-(3-aminophenyl)-2-furfurylidene]	1670	1717	1652	1676	1724
54	2-[5-(2-aminophenyl)-2-furfurylidene]	1670	1717	16721718	-	-
55	2-[5-(2-chlorophenyl)-2-furfurylidene]	1671	1717	- -	1677	1724
56	2-[5-(2-bromophenyl)-2-furfurylidene]	1670	1716	- -	1678	1724
57	2-[5-(2-fluorophenyl)-2-furfurylidene]	1671	1715	- -	-	-
58	2-[5-(3-chlorophenyl)-2-furfurylidene]	1671	1717	- -	1678	1725
59	2-[5-(3-bromophenyl)-2-furfurylidene]	1671	1717	16751718	1679	1725
60	2-[5-(3-nitrophenyl)-2-furfurylidene]	1673	1718	- -	-	-
61	2-[5-(4-nitrophenyl)-2-furfurylidene]	1674	1719	16721715	-	-
62	2-[5-(2-nitrophenyl)-2-furfurylidene]	1675	1720	16781723	1679	1726
63	2-[5-(2-chlorophenyl)-2-furfurylidene]	1673	1718	16771722	1680	1726
64	2-(5-phenyl-2-thenylidene)	1671	1719	16751723	1679	1725
65	2-[5-(4-aminophenyl)-2-thenylidene]	1668	1718	16701718	1677	1723
66	2-[5-(4-methoxyphenyl)-2-thenylidene]	1670	1718	1648	1679	1723
67	2-[5-(4-methylphenyl)-2-thenylidene]	1670	1719	1648	1678	1725
68	2-[5-(3-methylphenyl)-2-thenylidene]	1671	1719	16751723	1679	1725
69	2-[5-(4-chlorophenyl)-2-thenylidene]	1672	1720	16721721	1680	1725
70	2-[5-(4-bromophenyl)-2-thenylidene]	1672	1720	16731723	1680	1726
71	2-[5-(3-bromophenyl)-2-thenylidene]	1671	1720	1673	1680	1726
72	2-[5-(4-nitrophenyl)-2-thenylidene]	1674	1721	1649	1682	1726

${ }^{a}$ Some compounds were sparingly soluble in the given solvents and therefore the corresponding wavenumbers were not measured. Some of the data for compounds $23-72$ were taken from ref..$^{1-2}$.
of the 2 -alkyl derivatives V are generally situated at lower wavenumbers than the absorption bands of the corresponding 2 -aryl derivatives $I V$. The compounds $V I I-I X$ which have in the position 2 an $s p^{2}$ hybridised atom absorb at lower wavenumbers than all the above-mentioned derivatives as a result of an extended conjugation in the system. In the series of compounds $I X$ the aryl group has a marked effect on the carbonyl group and the wavenumbers of the $\mathrm{C}=\mathrm{O}$ stretching vibrations can be correlated ${ }^{1,2}$ with Hammett substituent constants.

The wavenumbers of symmetric and asymmetric $\mathrm{C}=\mathrm{O}$ stretching vibrations of 5,6-dihydro-4,7-dithia-1,3-indanediones are lower than those of the corresponding 1,3 -indanediones ${ }^{3}$. We have already explained ${ }^{1}$ this phenomenon as the result of an electron donating effect exerted by the sulphur atoms upon the carbonyl groups.

The difference between the wavenumbers of the symmetric and asymmetric $\mathrm{C}=\mathrm{O}$ stretching vibration, $\Delta v=v_{\mathrm{s}}-v_{\mathrm{as}}$, can be used as a measure of the vibrational coupling in a 1,3 -dicarbonyl system. The Δv value is higher for 5,6 -dihydro-4,7-di-thia-1,3-indanediones than for the corresponding 1,3 -indanediones; this is given by the shorter $\mathrm{C}=\mathrm{C}$ bond in the five-membered ring and the resulting increase of the angle between the two vibrating $\mathrm{C}=\mathrm{O}$ bonds. It follows further from the comparison of Δv values that, similarly as in the case of other 1,3 -indanedione derivatives ${ }^{3,4}$, the degree of the vibrational coupling is markedly affected also by the hybridisation of the $\mathrm{C}_{(2)}$ atom and by substituents on the 1,3 -indanedione skeleton. Compounds, containing an $s p^{2}$-hybridized $\mathrm{C}_{(2)}$ atom exhibit a higher degree of vibrational coupling than compounds with an $s p^{3}$-hybridized $\mathrm{C}_{(2)}$ atom. Electron donating substituents raise whereas electron accepting substituents lower the degree of the vibrational coupling.

Like for other 1,3 -dicarbonyl compounds ${ }^{3,9-11}$, statistically significant linear correlations between wavenumbers of symmetric and asymmetric $\mathrm{C}=\mathrm{O}$ stretching vibrations exist also for the 5,6 -dihydro-4,7-dithia-1,3-indanedione derivatives. Since the slopes of the regression straight lines of these correlations for data measured in chloroform, acetonitrile and tetrachloromethane are practically identical, the correlation between the wavenumbers v_{s} and v_{as} can be expressed by a common correla-
tion including 187 experimental data obtained in these three solvents (Fig. 2):

$$
v_{\mathrm{s}}=0.825 v_{\mathrm{as}}+339.7 ; \quad r=0.984 . \quad s_{\underline{Q}}=0.011, \quad s=1.8,
$$

where r is correlation coefficient, s_{ϱ} is standard deviation of ϱ and s is standard deviation. The use of such common correlation of v_{s} with v_{as} is justified also by the results of Fayat and Faucaud ${ }^{10}$ who correlated the values v_{s} with the values $v_{\text {as }}$ found for the same 1,3-dicarbonyl compound in a whole series of solvents. From 406 experimental data published in ref. ${ }^{3}$ we calculated an analogous common relation-

Fig. 1
Plot of Symmetric against Asymmetric $\mathrm{C}=\mathrm{O}$ Stretching Vibration Wavenumbers for Substituted 5,6-Dihydro-4,7-dithia-1,3-indanediones (in $\mathrm{CHCl}_{3}, \mathrm{CH}_{3} \mathrm{CN}$ and CCl_{4})

Fig. 2
Plot of Symmetric against Asymmetric $\mathrm{C}=\mathrm{O}$ Stretching Vibration Wavenumbers for $1,3-$ -Indanediones (in $\mathrm{CHCl}_{3}, \mathrm{CH}_{3} \mathrm{CN}$ and CCl_{4})

ship also for 1,3-indanedione derivatives (Fig. 3):

$$
v_{\mathrm{s}}=0.781 v_{\mathrm{as}}+412.8 ; \quad r=0.993, \quad s_{a}=0.005, \quad s=1.6
$$

The slope of this linear empirical relationship, ϱ, can be regarded as a semiquantitative measure of a different influence of structure and solvent on the wavenumber of the symmetric and asymmetric $\mathrm{C}=\mathrm{O}$ stretching vibration. For majority of 1,3 -dicarbonyl compounds ϱ is smaller than 1 : this means that the wavenumber of the asymmetric $\mathrm{C}=\mathrm{O}$ stretching vibration is more sensitive to structural and solvent effects than the wavenumber of the symmetric vibration. 1,3-Cyclopentanedione and 1,3-cyclohexanedione derivatives ${ }^{10}$ represent an exception: for these compounds $\varrho=1$; this shows an identical effect of the structure and solvent on the wavenumbers v_{s} and $v_{\mathrm{as} .}$. From a comparison of the slopes ϱ, found for series of 1,3 -indanediones ${ }^{3,4}$ as well as for other 1,3-dicarbonyl compounds ${ }^{9-11}$, it follows that the mentioned difference in the effect of structure and solvent on v_{s} and v_{as} will greatly depend on the mesomeric interaction between the vibrating $\mathrm{C}=\mathrm{O}$ groups. This difference is smaller for 5,6 -dihydro-4,7-dithia-1,3-indanediones $(~ Q=0.825$) than for 1,3-indanediones $(\varrho=0.781)$ since in the former compounds the mesomeric interaction between the $\mathrm{C}=\mathrm{O}$ groups is mediated only by two π-electrons of the $\mathrm{C}=\mathrm{C}$ bond.

We are indebted to Mrs Z. Šustekova for the technical cooperation.

REFERENCES

1. Perjéssy A., Hrnčiar P., Sokolová R.: This Journal 38, 559 (1973).
2. Perjéssy A., Hrnčiar P., Frimm R.: Acta Fac. Rerum Nat. Univ. Comenianae, Chimia 18, 89 (1973).
3. Perjéssy A., Hrnčiar P.: Tetrahedron 27, 6159 (1971).
4. Perjéssy A., Rotbergs J., Oškaja V. P.: This Journal, in press.
5. Hrnčiar P., Sokolová R.: Monatsh. Chem. 104, 1224 (1973).
6. Sokolová R.: Thesis. Comenius University, Bratislava 1971.
7. Perjéssy A., Hrnčiar P., Krutošíková A.: Tetrahedron 28, 1025 (1972).
8. Perjéssy A., Hrnčiar P., Frimm R., Fišera L’:: Tetrahedron 28, 3781 (1972).
9. Perjéssy A., Szemes F., Hrnčiar P.: Unpublished results.
10. Fayat C., Faucaud A.: Bull. Soc. Chim. Fr. 1970, 4491.
11. Fayat C., Faucaud A.: Bull. Soc. Chim. Fr. 1970, 4505.

Translated by M. Tichý.

